Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

\{[(N-Methyl-p-toluidino)diphenylphosphoranylidene]methyl\}(N-methyl-p-toluidino)diphenylphosphonium iodide

Dianne D. Ellis, ${ }^{\text {a* }}$ Anthony L. Spek, ${ }^{\text {a }}$ Pieter Imhoff ${ }^{\text {b }}$ and Cornelis J. Elsevier ${ }^{\text {b }}$

${ }^{\text {a Bijvoet Center for Biomolecular Research, Department of Crystal and Structural }}$ Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and ${ }^{\mathbf{b}}$ Instituut voor Moleculaire Chemie, Coördinatie- en Organometaalchemie, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
Correspondence e-mail: d.d.ellis@chem.uu.nl

Received 1 March 2000
Accepted 17 March 2000
The cationic part of the homodifunctional aminophosphoranyl ligand, $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{P}_{2}^{+} \cdot \mathrm{I}^{-}$, shows interesting features associated with the $\mathrm{N}-\mathrm{P}-\mathrm{C}-\mathrm{P}-\mathrm{N}$ skeleton. The $\mathrm{P}-\mathrm{C}(\mathrm{H})$ bond distances $[1.696$ (3) and 1.697 (3) \AA] possess partial doublebond characteristics. The nature of the $\mathrm{P}-\mathrm{C}(\mathrm{H})$ and $\mathrm{P}-\mathrm{N}$ bonds suggests that the positive charge is only distributed around the $\mathrm{P}-\mathrm{C}-\mathrm{P}$ atoms. The structure has near twofold symmetry through the central methylide- C atom.

Comment

The amino $\left[\left(R_{2} \mathrm{P}-\mathrm{N} X R^{\prime}\right) \mathrm{C} R^{\prime \prime}\right]$ and iminophosphoranyl ligands $\left[\left(R_{2} \mathrm{P}=\mathrm{N} R^{\prime}\right) \mathrm{C} X R^{\prime \prime}\right]$ are essentially tautomeric forms, their basicity and reactivity altered by changing the groups at either phosphorus $(R=\mathrm{Me}, \mathrm{Ph})$, nitrogen $\left(X=\mathrm{H}, \mathrm{Me} ; R^{\prime}=\mathrm{H}\right.$, $\mathrm{Me}, \mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4} Y-4$ where $Y=\mathrm{Me}, \mathrm{NO}_{2}$) or methylide carbon ($R^{\prime \prime}=\mathrm{H}, \mathrm{Me}, \mathrm{SiMe}_{3}$). The iminophosphoranyl ligands and their mono-anions are known to coordinate in various forms to electron-rich metals such as $\mathrm{Rh}^{\mathrm{I}}, \mathrm{Ir}^{\mathrm{I}}, \mathrm{Pd}^{\mathrm{II}}$ and $\mathrm{Pt}^{\mathrm{II}}$. They donate one, two or four electrons to the metal centre, ligating via N and methylide-C atoms, producing chelating, ylid and terdentate species (Avis et al., 1995; Imhoff et al., 1991, 1995).

The title compound, (I), was unexpectedly synthesized in the reaction of $\left[\mathrm{Rh}\left\{\mathrm{CH}\left(\mathrm{PPh}_{2}=\mathrm{N} \text { - } p \text {-tolyl }\right)_{2}\right\}(\mathrm{COD})\right]$ with MeI, involving formation of $[\mathrm{Rh}(\mathrm{COD}) \mathrm{I}]_{2}$ and the transfer of Me groups to nitrogen. The formation of the discrete cation-anion pair, shown in Fig. 1, is distinct from a similar reaction of $\left[\mathrm{Rh}\left\{\mathrm{CH}\left(\mathrm{PPh}_{2}=\mathrm{N}-p \text {-tolyl }\right)_{2}\right\}(\mathrm{COD})\right]$ with HCl (Imhoff et al., 1995) which resulted in protonation at one N and the methanide C atom. The cationic ligand (I) consists of two (N -methyl- N - p-tolylamino)diphenylphosphoranyl units attached via the phosphorus to a common methylide moiety. The $\mathrm{P}-\mathrm{N}$ bond distances $[1.656$ (3) and 1.657 (3) \AA] are typical of those found in aminophosphonium groups of metal complexes (Avis
et al., 1995, 1997; Imhoff et al., 1989, 1993), but are significantly longer than those found in iminophosphoranyl ligands such as $\left(\mathrm{Ph}_{2} \mathrm{P}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2} \mathrm{CH}_{2}$ (Imhoff et al., 1990) and $\left(\mathrm{Ph}_{2} \mathrm{P}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2} \mathrm{CHMe}$ (Avis et al., 1996). The $\mathrm{P}-\mathrm{N}$ bond characteristics in these imino species were attributed to a $p \pi(\mathrm{~N})-d \pi(\mathrm{P})$ interaction. The N atoms in (I) are also $s p^{2}$ hybridized but planar (nitrogen bond angles given in Table 1), producing little or no overlap between the nitrogen lone pair and the phosphorus d orbital. Both P atoms exhibit distorted tetrahedral geometries, with angles ranging from 103.96 (14)$114.01(14)^{\circ}$ around P 1 , and $103.84(14)-114.40(15)^{\circ}$ for P 2.

(I)

The $\mathrm{N}-\mathrm{C}$ and $\mathrm{P}-\mathrm{C}(\mathrm{Ph})$ bond distances are in good agreement with values observed in related systems. The P $\mathrm{C}(\mathrm{H})$ distances of 1.696 (3) and 1.697 (3) \AA are comparable to those found in the $\left(\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}-\mathrm{PPh}_{3}\right)^{+}$cation (Carroll \& Titus, 1977), $\mathrm{Na}\left(\mathrm{PhCHPPh}_{2} \mathrm{CHPPh}_{2}\right)\left(\mathrm{S}^{2}\right.$ chmidbaur et al., 1980) and $(\mathrm{MeSi})_{2} \mathrm{CPh}_{2}-\mathrm{CHPPh}{ }_{2} \mathrm{CH}(\mathrm{MeSi})_{2}$ (Appel et al., 1984). These values lie between those expected for single and double $\mathrm{P}-\mathrm{C}$ bonds, resulting in partial double-bond characteristics. The molecule possesses non-crystallographic C_{2} symmetry, considering the equivalence of bond lengths and bond angles around the $\mathrm{N}-\mathrm{P}-\mathrm{C}-\mathrm{P}-\mathrm{N}$ core. The puckering of the $\mathrm{P}-$ $\mathrm{C}-\mathrm{P}$ component leads to a distorted trigonal geometry at C 1 , $\mathrm{P} 1-\mathrm{C} 1-\mathrm{P} 2=133.6(2)^{\circ}$, and reduces the overall symmetry to C_{1}. The widening of this angle from the ideal 120° is possibly caused by steric repulsions between adjacent phenyl groups on the P atoms.

Only the $\mathrm{P}-\mathrm{C}(\mathrm{H})-\mathrm{P}$ distances have non-integral bond orders so presumably the charge is localized within the $\mathrm{P}-$

Figure 1
Plot of (I) with 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
$\mathrm{C}-\mathrm{P}$ component, as depicted by the mesomeric structure in the chemical scheme. Further delocalization over the whole $\mathrm{N}-\mathrm{P}-\mathrm{C}-\mathrm{P}-\mathrm{N}$ skeleton is precluded because of the nonplanar arrangement of the atoms. The diffuse nature of the positive charge, and possibly steric hindrance, isolates the iodide anion from the cation. The shortest contacts between the iodide and adjacent aminophosphoranyl molecules involves interactions with methyl- or phenyl-H atoms: $\mathrm{I} 1 \cdots \mathrm{H} 14 C^{\mathrm{i}}(3.15 \AA), \mathrm{I} 1 \cdots \mathrm{H}_{3} 7^{\mathrm{ii}}(3.20 \AA)$ and $\mathrm{I} 1 \cdots \mathrm{H} 10$ of $3.22 \AA$ [symmetry codes: (i) $1-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (ii) $1-x, \frac{1}{2}+$ $\left.y, \frac{1}{2}-z\right]$.

Experimental

Compound (I) was obtained from the reaction of $\left[\mathrm{Rh}\left\{\mathrm{CH}\left(\mathrm{PPh}_{2}=\mathrm{N}-\right.\right.\right.$ p-tolyl $\left.)_{2}\right\}(\mathrm{COD})$] with about 10 equivalents of MeI in benzene (Imhoff et al., 1995). Brown crystals suitable for X-ray diffraction were grown by slow diffusion of hexane into a room-temperature solution of the compound in benzene-dichloromethane (1:1).

Crystal data

$\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{P}_{2}^{+} \cdot \mathrm{I}^{-}$
$M_{r}=750.60$
Monoclinic, $P 2_{1} / c$
$a=13.3126$ (5) \AA
$b=14.3251$ (5) \AA
$c=18.9767$ (7) \AA
$\beta=95.819(3)^{\circ}$
$V=3600.3(2) \AA^{3}$
$Z=4$
$D_{x}=1.385 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=14.0-18.0^{\circ}$
$\mu=1.010 \mathrm{~mm}^{-1}$
$T=295(2) \mathrm{K}$
Block, brown
$0.40 \times 0.30 \times 0.13 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4F diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.788, T_{\text {max }}=0.877$
8582 measured reflections
8582 independent reflections

> 5992 reflections with $I>2 \sigma(I)$
> $\theta_{\max }=28^{\circ}$
> $h=-17 \rightarrow 17$
> $k=-18 \rightarrow 0$
> $l=0 \rightarrow 24$
> 3 standard reflections \quad frequency: 60 min intensity decay: 1%

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0489 P)^{2}\right. \\
\quad+3.4354 P] \\
\quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.003 \\
\Delta \rho_{\max }=1.35 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-0.97 \mathrm{e}^{-3}
\end{array}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.121$
$S=1.031$
8582 reflections
423 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

P1-N1	$1.656(3)$	$\mathrm{P} 2-\mathrm{C} 30$	$1.801(3)$
$\mathrm{P} 1-\mathrm{C} 1$	$1.696(3)$	$\mathrm{P} 2-\mathrm{C} 36$	$1.816(3)$
$\mathrm{P} 1-\mathrm{C} 8$	$1.806(3)$	$\mathrm{N} 1-\mathrm{C} 15$	$1.441(4)$
$\mathrm{P} 1-\mathrm{C} 2$	$1.820(3)$	$\mathrm{N} 1-\mathrm{C} 14$	$1.477(4)$
$\mathrm{P} 2-\mathrm{N} 2$	$1.658(3)$	$\mathrm{N} 2-\mathrm{C} 23$	$1.440(4)$
$\mathrm{P} 2-\mathrm{C} 1$	$1.697(3)$	$\mathrm{N} 2-\mathrm{C} 22$	$1.477(4)$
N1-P1-C1	$113.99(14)$	$\mathrm{C} 1-\mathrm{P} 2-\mathrm{C} 36$	$106.21(15)$
N1-P1-C8	$103.94(14)$	$\mathrm{C} 30-\mathrm{P} 2-\mathrm{C} 36$	$108.60(14)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 8$	$113.95(14)$	$\mathrm{C} 15-\mathrm{N} 1-\mathrm{C} 14$	$113.7(2)$
N1-P1-C2	$109.26(14)$	$\mathrm{C} 15-\mathrm{N} 1-\mathrm{P} 1$	$123.1(2)$
C1-P1-C2	$106.43(14)$	$\mathrm{C} 14-\mathrm{N} 1-\mathrm{P} 1$	$123.0(2)$
C8-P1-C2	$109.20(14)$	$\mathrm{C} 23-\mathrm{N} 2-\mathrm{C} 22$	$113.7(2)$
N2-P2-C1	$113.96(14)$	$\mathrm{C} 23-\mathrm{N} 2-\mathrm{P} 2$	$122.8(2)$
N2-P2-C30	$103.81(14)$	$\mathrm{C} 22-\mathrm{N} 2-\mathrm{P} 2$	$122.9(2)$
$\mathrm{C} 1-\mathrm{P} 2-\mathrm{C} 30$	$114.43(14)$	$\mathrm{P} 1-\mathrm{C} 1-\mathrm{P} 2$	$133.64(19)$
N2-P2-C36	$109.75(14)$		

HELENA (Spek, 1997); program(s) used to solve structure: DIRDIF (Beurskens, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: PLATON.

X-ray data were kindly collected by A. J. M. Duisenberg. The investigations were supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization of Scientific Research (NWO).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1596). Services for accessing these data are described at the back of the journal.

References

Alexander, L. E. \& Smith, G. S. (1962). Acta Cryst. 15, 983-1004.
Appel, R., Haubrich, G. \& Knoch, F. (1984). Chem. Ber. 117, $2063-2075$.
Avis, M. W., Elsevier, C. J., Veldman, N., Kooijman, H. \& Spek, A. L. (1996). Inorg. Chem. 35, 1518-1528.
Avis, M. W., van der Boom, M. E., Elsevier, C. J., Smeets, W. J. J. \& Spek, A. L. (1997). J. Organomet. Chem. 527, 263-276.

Avis, M. W., Vrieze, K., Kooijman, H., Veldman, N., Spek, A. L. \& Elsevier, C. J. (1995). Inorg. Chem. 34, 4092-4105.

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1997). The DIRDIF97 Program System, Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Boer, J. L. de \& Duisenberg, A. J. M. (1984). Acta Cryst. A40, C-410.
Carroll, P. J. \& Titus, D. D. (1977). J. Chem. Soc. Dalton Trans. pp. 824-829.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Imhoff, P. \& Elsevier, C. J. (1989). J. Organomet. Chem. 361, C61-C65.
Imhoff, P., Gülpen, P., Vrieze, K., Smeets, W. J. J., Spek, A. L. \& Elsevier, C. J. (1995). Inorg. Chim. Acta, 12, 77-88.

Imhoff, P., van Asselt, R., Elsevier, C. J., Vrieze, K., Goubitz, K., van Malssen,
K. F. \& Stam, C. H. (1990). Phosphorus Sulfur Silicon, 47, 401-415.

Imhoff, P., van Asselt, R., Elsevier, C. J., Zoutberg, M. C. \& Stam, C. H. (1991). Inorg. Chim. Acta, 184, 73-87.
Imhoff, P., van Asselt, R., Ernsting, J. M., Vrieze, K., Elsevier, C. J., Smeets, W. J. J., Spek, A. L. \& Kentgens, A. P. M. (1993). Organometallics, 12, 15231536.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Schmidbaur, H., Deschler, U., Zimmer-Gasser, B., Neugebauer, D. \& Schubert, U. (1980). Chem. Ber. 113, 902-911.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1997). HELENA. Utrecht University, The Netherlands.
Spek, A. L. (1999). PLATON. Utrecht University, The Netherlands.

